The Ring of Fire
Imaging Vascular Calcification and Inflammation Using PET/CT

Dr Marc Dweck
BHF Clinical Lecturer
Specialist Registrar
Introduction

• We have used PET/CT to study the pathology of 2 conditions

• Aortic stenosis: the most common form of heart valve disease in the western world

• Atherosclerosis: the most common cause of death
Similar Pathophysiology

Why are statin ineffective in aortic stenosis?
Positron Emission Tomography
PET Detector

Positron + Electron \rightarrow 2 \times 511\text{keV} \text{ photons}
Positron Emission Tomography (PET) Computed Tomography (CT) (PET/CT)

PET

FUSED PET/CT
PET Tracers Used

18F-Fluorodeoxyglucose (18F-FDG):
 - Inflammation

18F-Sodium Fluoride (18F-NaF):
 - Calcification Activity
18F- Fluorodeoxyglucose (18F-FDG)

- Glucose analogue: metabolic trapping within cells with high glucose requirements
 - Cancer imaging
 - Vascular inflammation
 - Macrophages have higher glucose requirement than surrounding cells
18 Fluoro-Deoxy Glucose
Atherosclerosis

Rudd et al. *Circulation* 2002;105:2708-2711
\(^{18}\text{Fluoro-Deoxy Glucose}\) Correlates with carotid macrophage burden

Tawakol et al JACC 2006
18F-NaF

Calcification Activity

- Used as a bone tracer for 30 years
- Binds to hydroxyapatite, a key structural component of bone and vascular calcification
18F-NaF is a marker of Calcification Activity

| Volume μm³ | 8000 | 8000 | 8000 | 8000 |
| Surface area | 2400 | 4800 | 24,000 | ? |

24,000,000,000 μm²
Aortic Stenosis
Aortic Stenosis Background

- Burden is set in increase
 Nkomo et al, Lancet 2006

- No effective medical treatment

- Predicting disease progression is challenging

- Pathophysiology is incompletely understood
Aims

To use PET/CT to investigate

• The relative contributions of calcification (18F-NaF) and inflammation (18F-FDG) to the different stages of aortic stenosis

• The importance of calcification and inflammation to disease progression.
Methods

• 121 patients, age 72 ±8 years, 69% male
 – 20 Control; 20 Aortic Sclerosis; 25 Mild, 33 Moderate, 23 Severe Aortic Stenosis

• Echocardiogram, CT Calcium score & 2 PET /CT scans at baseline
 – 125MBq 18F-NaF
 – 200MBq 18F-FDG

• 20 patients: repeat echo and CT calcium scoring at 1 year
18F-NaF Activity: Aortic Valve

Field of View: 780mm
512 matrix size
Voxel size: 1.5 × 1.5 × 3.0mm
18F-NaF Correlates with Histological Markers of Calcification Activity

18F-NaF PET

Alkaline Phosphatase

Alk Phos Immunohistochemistry

Graph showing the correlation between Valve 18F-NaF Activity and the % surface area of the valve stained. The equation is R² = 0.82, P < 0.001.
Tracer uptake vs Aortic Stenosis Severity

Aortic Valve PET Activity (TBR)

Dweck et al Circulation 2012;125:76-86
Differences between Atheroma and Aortic Stenosis

- Calcification (18F-NaF) increased in the valve.

- Inflammation (18F-FDG) increased in aortic atheroma

Dweck et al. European Heart Journal. In press
18F-NAF Predicts Aortic Stenosis Disease Progression at 1 year

Good correlation between baseline PET activity and - change in calcium score (CT) $r^2=0.44$, $p<0.001$

Out performed the current gold-standard method: $r^2=0.36$, $p<0.001$

18F-FDG was not predictive of disease progression: $r^2=0.02$, $p=0.55$
Conclusions

• Positron emission tomography is a novel, feasible and repeatable approach to the evaluation of valvular calcification and inflammation in patients with aortic stenosis.

• PET/CT holds promise as a clinical tool for predicting disease progression and as a surrogate biomarker and end-point in studies of potential therapeutic agents.

SALTIRE 2

- Test whether putative anti-calcific therapies can reduce the 18F-NaF signal in the aortic valve and whether they can slow disease progression
 - Bisphosphonates
 - Denosumab
 - ACE inhibitors
Background

- The majority of MIs are caused by atherosclerotic plaque rupture

- Identifying lesions at risk of rupture is challenging

- Most are non-flow limiting
 - Therefore missed by conventional stress testing or invasive coronary angiography
Inflammation, Calcification & Vulnerable Plaque

VULNERABLE PLAQUE CHARACTERISTICS

Inflammation
- Macrophages
- Secrete MMPs

Calcification
- Healing response to inflammation
- Early stages increase vulnerability

Spotty Calcification

Adapted from Vancraeynest et al, JACC 2011
Hypothesis

18F-FDG and 18F-NaF PET might label high-risk coronary atherosclerotic plaques by identifying inflammation and spotty calcification respectively.
Coronary Atherosclerosis Cohort

• Patient population
 – 40 patients with stable angina
 – 40 patients post myocardial infarction

• All received
 – Invasive & CT coronary angiography
 – Calcium scoring
 – 18F-FDG & 18F-NaF PET
Measurement of Coronary 18F-FDG Activity was Difficult

- Not possible in >50% of the coronary vessel territories examined
- No important differences observed between our populations
18F-NaF Activity post STEMI

Coronary Angiogram (LCA)

Fused 18F-NaF PET CT
18F-NaF Activity post STEMI

Coronary Angiogram (LCA)

Fused 18F-NaF PET CT
18F-NaF Activity post NSTEMI

Coronary Angiogram (RCA)

Fused 18F-NaF PET CT
• 93% had increased 18F-NaF activity in the culprit plaque

• The remaining 7% were either young smokers or had an equivocal culprit
18F-NaF Identifies Culprit Plaque Post TIA

12 patients undergoing endarterectomy post TIA: 18F-NaF activity localised exactly to the area of plaque rupture on the excised plaques
18-NaF Uptake Associated with increased Histological Calcification Activity

Alkaline Phosphatase

<table>
<thead>
<tr>
<th>%Staining of vessel wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF Positive Regions</td>
</tr>
<tr>
<td>NaF Negative Regions</td>
</tr>
</tbody>
</table>

p<0.0001

Osteocalcin

<table>
<thead>
<tr>
<th>%Staining of vessel wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF Positive Regions</td>
</tr>
<tr>
<td>NaF Negative Regions</td>
</tr>
</tbody>
</table>

p<0.0001
18F-NaF Identifies Vascular Calcification Activity & Culprit Plaque

What about stable coronary artery disease?
Stable Coronary Artery Disease

- Focal increased 18F-NaF uptake observed in 45%
18FNaF Activity in the Absence of Calcification on CT
VH-IVUS Features of 18F-NaF Positive and Negative lesions

- NaF -ive
 - 12% Necrotic core
 - 12% Calcification
 - 76% Fibrous/ Fibrofatty

- NaF +ive
 - 49% Necrotic core
 - 11% Calcification
 - 40% Fibrous/ Fibrofatty
18F-NaF Appears to Identify Vulnerable Plaque

VULNERABLE PLAQUE CHARACTERISTICS

- Spotty Calcification
- Large Necrotic Core
- Inflammation
- Thin Fibrous Cap
- Positive Remodeling

<table>
<thead>
<tr>
<th>Feature</th>
<th>NaF Positive</th>
<th>NaF Negative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF Positive:</td>
<td>73%</td>
<td>21%</td>
<td><0.001</td>
</tr>
<tr>
<td>Minimal Luminal Area mm²:</td>
<td>9 (6-14)</td>
<td>7 (5-10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Plaque Area mm²:</td>
<td>24(21-29)</td>
<td>14 (12-18)</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Calcification appears to occur as a healing response to intense plaque inflammation

• 18F-NaF identifies high-risk plaque
 • Culprit plaques post myocardial infarction
 • In stable angina vulnerable plaques with multiple high-risk features
Marker of the Vulnerable Plaque?

Has the potential to change the way we treat coronary disease

Lesion Severity Ischaemia Plaque Biology Vulnerability
Acknowledgements

University of Edinburgh
Prof David Newby
Dr Nikhil Joshi
Dr Nicholas Boon
Dr Alex Vesey
Prof Edwin van Beek
Dr Alison Fletcher
Dr Graham McKillop
Dr William Jenkins
Prof Donald Salter
Dr William Wallace

This work was supported by a British Heart Foundation Clinical PhD Training Fellowship (FS/10/026), the Chief Scientist’s Office and the British Heart Foundation Centre of Research Excellence Award.

Cambridge University
Dr James Rudd

Cedars Sinai Hospital, LA
Dr Daniel Berman
High sensitivity-Trop I in stable angina patients

\[p = 0.047 \]
Excellent Interobserver Reproducibility

18F-NaF

A)
Average of Max 18F-NaF TBR measurements

Mean Difference

0 2 4 6 8
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.23
0.02
-0.19

18F-FDG

D)
Average of Max 18F-FDG TBR measurements

Mean Difference

-0.11
0.02
-0.15

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
18F-NaF Predicts Change in Coronary Calcium Score

$r^2 = 0.52 \ p < 0.001$
Poor Reproducibility of Coronary 18F-FDG Measurements

- Not possible in 49% of the coronary vessel territories examined

Intra-class Correlation Coefficient = 0.67 (95% CI: 0.31 to 0.86)
18F-FDG Activity
Aortic Valve 18F-FDG activity Maps Closely to Macrophage Staining

18F-FDG PET

CD 68 Immunohistochemistry
Fluoro-Deoxy Glucose
Influence of Statins

Tahara et al. JACC 2006;48:1825-1831
Tawakol et al. JACC 2013; in press