Melanoma PDX

Table 1: Success rate PDX platform

<table>
<thead>
<tr>
<th>Tumor samples</th>
<th>Number</th>
<th>Xenografted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF<sub>V600E/K</sub></td>
<td>86</td>
<td>73 (85%)</td>
</tr>
<tr>
<td>NRAS<sub>Q61</sub></td>
<td>10</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>BRAF<sub>WT</sub>NRAS<sub>WT</sub></td>
<td>7</td>
<td>6 (85%)</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>89 (86%)</td>
</tr>
</tbody>
</table>

Whole exome sequencing | 13
360-cancer gene panel | 47

Kemper et al., Cell Rep. *In press*
Studying resistance mechanisms with PDX

Research Article

Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts

Kristel Kemper1,†, Oscar Krijgsman1,†, Paulien Cornelissen-Steijger1, Aida Shahrai1, Fleur Weeber1, Ji-Ying Song2, Thomas Kuilman1, Daniel J Vis3, Lodewyk F Wessels3, Emile E Voest1, Ton NM Schumacher4, Christian U Blank4, David J Adams5, John B Haanen4 & Daniel S Peeper1,†

Published online: June 23, 2015
Questions still to be answered?

What mutations drive disease phenotype?
A cross-species study for the discovery of genes involved in melanoma metastasis

Leeds cohort FFPE samples 222 patients

Lund cohort FFPE samples 223 patients

Melanoma-specific survival analysis
Cox proportional HR

Overall Survival
Cox proportional HR

Comparison

Microarray Expression Data

Genes Assessed

RNA-seq
5 cell-lines, 5 Biol. replicates per line

Differential Expression analysis
High VS Low metastatic lines

414 under-expressed genes & 464 over-expressed genes
(93% have orthologous gene in human)

18 genes (FDR<0.1) with concordant expression change associated with risk (Hazard Ratio>1)
Low LFNG expression is predictive of a poor outcome in melanoma

Melanoma Specific survival

Hazard Ratio: 1.66
g2d1 clones carry a 1bp frameshift mutation in Lfng
Dog melanoma
Dog mucosal melanoma

Spontaneous model

Dog trials
Mucosal Melanoma

Small numbers of mutations

No *KIT/GNAQ* mutations

No *BRAF* mutations

But some *K-RAS* and *N-RAS*

Some *p53*

MAPK therapies??
Zebrafish melanoma

BRAF^{V600E}
Horse and pig melanoma

Grey horses
Real opportunity for comparative genomics/pathology!!
Phenotype is highly associated with melanoma risk
Melanoma GWAS

Pigment and telomere genes predominate

Law & Bishop et al., 2015
What GWAS has contributed?

Pathways and processes that contribute
Reconfirmed the importance of phenotype

MC1R homozygote
Red head mice

Mitra et al., Nature 2012
UV melanoma models

Kannan et al., PNAS 2003
Cross-species models of human melanoma

Louise van der Weyden,1 E Elizabeth Patton,2 Geoffrey A Wood,3 Alastair K Foote,4 Thomas Brenn,5 Mark J Arends6 and David J Adams1,*

1 Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
2 MRC Human Genetics Unit, The MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
3 Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
4 Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket, Suffolk, CB8 7NN, UK
5 Pathology Department, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
6 Centre for Comparative Pathology, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK

*Correspondence to: D Adams, Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK. E-mail: dal@sanger.ac.uk